Period doubling in six-dimensional symmetric volume-preserving maps

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 213079
(http://iopscience.iop.org/0305-4470/21/14/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 11:22

Please note that terms and conditions apply.

Period doubling in six-dimensional symmetric volumepreserving maps

Jian-min Mao
Center for Studies of Nonlinear Dynamics \dagger, La Jolla Institute, 10280 N Torrey Pines Road, Suite 260, La Jolla, California 92037, USA

Received 6 May 1987

Abstract

Period doubling in three symmetrically coupled two-dimensional area-preserving maps is numerically studied. It is found that there is a two-dimensional manifold on which all period $2^{n}(n=0,1,2, \ldots)$ orbits of a period-doubling bifurcation sequence lie. On this manifold, the universality classes of period doubling are just the three classes for two symmetrically coupled two-dimensional area-preserving maps, each characterised by its own Feigenbaum constants, reported by Mao and Helleman. It is also reported that, for three non-symmetrically coupled two-dimensional area-preserving maps, three maps which are fixed under the renormalisation operator have been found. The relevant eigenvalues of perturbation around the fixed maps are again the same as those found for two nonsymmetrically coupled two-dimensional area-preserving maps, by Mao and Greene. The above-mentioned numerical and renormalisation results for the six-dimensional maps agree with each other.

1. Introduction

A transition from periodic motion to chaotic motion in Hamiltonian systems with N degrees of freedom can be studied via the period-doubling route of volume-preserving ($2 N-2$)-dimensional maps. For $N=2$, period doubling in two-dimensional (2D) area-preserving maps, such as the Hénon map

$$
\begin{equation*}
x^{\prime}=-y+f(x) \quad y^{\prime}=x \tag{1.1}
\end{equation*}
$$

has been extensively studied [1-4]. For $N=3$, period doubling in four-dimensional (4D) volume-preserving maps has attracted more and more interest in recent years [5-9]. Using the following symmetric 4D volume-preserving maps, i.e. two symmetrically coupled two-dimensional area-preserving maps,

$$
\begin{array}{ll}
x_{1}^{\prime}=-y_{1}+f\left(x_{1}, x_{2}\right) & y_{1}^{\prime}=x_{1} \\
x_{2}^{\prime}=-y_{2}+f\left(x_{2}, x_{1}\right) & y_{2}^{\prime}=x_{2} \tag{1.2}
\end{array}
$$

period doubling has been studied numerically [8] and by a renormalisation calculation [9]. In the numerical study, the 4D maps have two parameters, and thus there are two convergence rates of the parameters (i.e. Feigenbaum constants), δ_{1} and δ_{2}. It was found that $\delta_{1}=8.721 \ldots$ (the same as 2 D area-preserving maps) in all cases and $\delta_{2}=-4.404 \ldots, 4.000 \ldots$ and $-2.000 \ldots$ for almost all bifurcation paths in the three
kinds of universality (E, L and U) classes respectively. For the exceptional paths in the L and U classes, $\delta_{2}=-15.1 \ldots$. In the renormalisation study for two nonsymmetrically coupled 2D area-preserving maps, three maps which are fixed under the renormalisation operator have been determined and called the E, L and U maps. The relevant eigenvalues of the perturbation around the fixed maps are $\delta_{2}=-4.4 \ldots, 4$ and -2 respectively for the E, L and U maps, and $\delta_{1}=8.721 \ldots$ for all three maps. These δ_{1} and δ_{2} values agree with the numerical results.

In this paper, we will study period doubling in symmetric six-dimensional (6D) volume-preserving maps ($N=4$),

$$
\begin{array}{ll}
x_{1}^{\prime}=-y_{1}+f\left(x_{1}, x_{2}, x_{3}\right) & y_{1}^{\prime}=x_{1} \\
x_{2}^{\prime}=-y_{2}+f\left(x_{2}, x_{3}, x_{1}\right) & y_{2}^{\prime}=x_{2} \tag{1.3}\\
x_{3}^{\prime}=-y_{3}+f\left(x_{3}, x_{1}, x_{2}\right) & y_{3}^{\prime}=x_{3}
\end{array}
$$

i.e. three symmetrically coupled 2D area-preserving maps with

$$
\begin{equation*}
f\left(x_{1}, x_{2}, x_{3}\right)=f\left(x_{1}, x_{3}, x_{2}\right) . \tag{1.4}
\end{equation*}
$$

Here $f\left(x_{1}, x_{2}, x_{3}\right)$ is a quadratic polynomial. Two or more parameters could be introduced into our 6D map. However, only two parameters have been actually used in the map (see equation (3.1)) in the numerical study because the renormalisation work (see §4) shows that there are only two relevant directions at each fixed point of the renormalisation operator in function space. The 6D map (1.3) has (see § 2) several lower-dimensional manifolds on each of which lie all period- $2^{n}(n=0,1,2, \ldots)$ orbits of the corresponding bifurcation sequence. One such manifold is $x_{1}=x_{2}=x_{3}$ and $y_{1}=y_{2}=y_{3}$, a 2D manifold, denoted by M_{0}. On this manifold M_{0}, period-doubling sequences have been obtained (see § 3). These are the same sequences for the 4 D map (1.2), with $x_{3}=x_{2}$ and $y_{3}=y_{2}$ here for our 6D map (1.3). Hence the same three universality classes (characterised by the same Feigenbaum constants δ_{1} and δ_{2}) as in the 4D case have been found. In $\S 4$, we perform a renormalisation calculation for three non-symmetrically coupled 2D area-preserving maps, which is of course valid for the symmetric case as well. Three maps which are fixed points of the renormalisation operator have been found. Around each fixed map, the eigenvalues of perturbation in the parameter space have been found to be identical to those for the two nonsymmetrically coupled 2 D area-preserving maps.

I would like to emphasise here that the 6 D maps studied in this paper are in a special class of 6 D maps. Probably, more universality classes of period doubling in a generic 6D map are waiting to be discovered.

2. Symmetries in 6 D symmetric volume-preserving maps

Consider the 6D map (1.3). It can be rewritten in the following vector form:

$$
\begin{equation*}
x=-y+f(x) \quad y=x \tag{2.1}
\end{equation*}
$$

where \boldsymbol{x} and \boldsymbol{y} are 3 -vectors, and f a non-linear transformation, i.e.

$$
\begin{align*}
& x \equiv\left(x_{1}, x_{2}, x_{3}\right) \\
& y \equiv\left(y_{1}, y_{2}, y_{3}\right) \tag{2.2}\\
& \boldsymbol{f}(x) \equiv\left(f_{1}\left(x_{1}, x_{2}, x_{3}\right), f_{2}\left(x_{1}, x_{2}, x_{3}\right), f_{3}\left(x_{1}, x_{2}, x_{3}\right)\right)
\end{align*}
$$

The symmetry of coupling (i.e. the three non-linear functions in map (1.3) are the same, with only their variables interchanged) takes the following form:

$$
\begin{equation*}
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=f_{2}\left(x_{3}, x_{1}, x_{2}\right)=f_{3}\left(x_{2}, x_{3}, x_{1}\right) \tag{2.3}
\end{equation*}
$$

The additional symmetry, equation (1.4), becomes

$$
\begin{equation*}
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=f_{1}\left(x_{1}, x_{3}, x_{2}\right) \tag{2.4}
\end{equation*}
$$

As can be seen, our map is very special. However, a numerical study (see §3) of period doubling in this special map gives all universality classes found in renormalisation calculation (see §4) for map (2.1) without those restrictions such as symmetries of equations (2.3) and (2.4).

2.1. Symmetries

An operator S is called a symmetry of a map T if S and ($T S$) are involutions $[1,9,10]$, i.e.

$$
\begin{align*}
& S^{2}=1 \tag{2.5}\\
& (T S)^{2}=1 \tag{2.6}
\end{align*}
$$

From this definition, we have

$$
\begin{align*}
& S T S=T^{-1} \tag{2.7}\\
& S T^{-1} S=T \tag{2.8}
\end{align*}
$$

The symmetry has a property that if $r=\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)$ is a fixed point of T^{N},

$$
\begin{equation*}
T^{N} r=r \tag{2.9}
\end{equation*}
$$

then $(S r)$ is also a fixed point of T^{N},

$$
\begin{equation*}
T^{N}(S r)=S r . \tag{2.10}
\end{equation*}
$$

In fact, according to (2.8), r is also a fixed point of $\left(T^{-1}\right)^{N}$ which can be rewritten, due to equations (2.8) and (2.5), as

$$
\begin{equation*}
\left(T^{-1}\right)^{N}=(S T S)^{N}=S T^{N} S . \tag{2.11}
\end{equation*}
$$

Therefore equation (2.10) holds.
The present map (2.1) with the restrictions (2.3) and (2.4) has four symmetries, denoted by S_{0}, S_{1}, S_{2} and S_{3}. They are given by
S_{0} :
$x_{i}^{\prime}=y_{i}, y_{i}^{\prime}=x_{i}$
$i=1,2,3$
$S_{1}: \quad x_{1}^{\prime}=y_{1}, y_{1}^{\prime}=x_{1} ; x_{i}^{\prime}=y_{j}, y_{1}^{\prime}=x_{j}$
$i=2,3, j=3,2$
$S_{2}: \quad x_{2}^{\prime}=y_{2}, y_{2}^{\prime}=x_{2} ; x_{i}^{\prime}=y_{j}, y_{i}^{\prime}=x_{j} \quad i=1,3, j=3,1$
$S_{3}: \quad x_{3}^{\prime}=y_{3}, y_{3}^{\prime}=x_{3} ; x_{i}^{\prime}=y_{j}, y_{i}^{\prime}=x_{j} \quad i=1,2, j=2,1$.
S_{1}, S_{2} and S_{3} are symmetries only if the additional symmetry of equation (2.4) is satisfied.

2.2. Commuters

We will call a product of any two symmetries, S_{i} and S_{j}, a commuter $C_{i j}$ [9]. According to equations (2.7) and (2.8), we write

$$
\begin{align*}
& S_{i} T S_{i}=T^{-1} \tag{2.16}\\
& S_{j} T^{-1} S_{j}=T \tag{2.17}
\end{align*}
$$

Substituting equation (2.16) into equation (2.17) and using equation (2.5), we thus prove that $C_{i j}$ commute with T,

$$
\begin{equation*}
C_{i j} T=T C_{i j} \tag{2.18}
\end{equation*}
$$

In terms of the four symmetries of our map (2.1), we could construct twelve commuters. Only five of them are independent:

$$
\begin{array}{lll}
C_{01}=C_{10}: & x_{1}^{\prime}=x_{1}, y_{1}^{\prime}=y_{1} ; x_{i}^{\prime}=x_{j}, y_{i}^{\prime}=y_{j} & i=2,3, j=3,2 \\
C_{02}=C_{20}: & x_{2}^{\prime}=x_{2}, y_{2}^{\prime}=y_{2} ; x_{i}^{\prime}=x_{j}, y_{i}^{\prime}=y_{j} & i=1,3, j=3,1 \\
C_{03}=C_{30}: & x_{3}^{\prime}=x_{3}, y_{3}^{\prime}=y_{3} ; x_{i}^{\prime}=x_{j}, y_{i}^{\prime}=y_{j} & i=1,2, j=2,1 \\
C_{12}=C_{23}=C_{31}: & x_{i}^{\prime}=x_{j}, y_{i}^{\prime}=y_{j} & i=1,2,3, j=3,1,2 \\
C_{21}=C_{32}=C_{13}: & x_{i}^{\prime}=x_{j}, y_{i}^{\prime}=y_{j} & i=1,2,3, j=2,3,1 . \tag{2.23}
\end{array}
$$

In addition, the identity $I=S_{i} S_{i}(i=0,1,2,3)$, of course, commutes with T.

2.3. Invariant manifolds

An invariant manifold of a commuter C (or any operator) is a subspace of the six-dimensional space such that, for any point r in the subspace,

$$
\begin{equation*}
C r=r . \tag{2.24}
\end{equation*}
$$

The invariant manifold of the first three commuters $\left(C_{01}, C_{02}\right.$ and $\left.C_{03}\right)$ are four dimensional. They are given by

$$
\begin{array}{ll}
M_{1}: & x_{2}=x_{3}, y_{2}=y_{3} \\
M_{2}: & x_{3}=x_{1}, y_{3}=y_{1} \\
M_{3}: & x_{1}=x_{2}, y_{1}=y_{2} . \tag{2.27}
\end{array}
$$

However, the invariant manifolds of the last two commuters, $C_{12}\left(=C_{23}=C_{31}\right)$ and $C_{21}\left(=C_{32}=C_{13}\right)$, are two dimensional. They are identical, and given by

$$
\begin{array}{ll}
M_{0}: & x_{1}=x_{2}=x_{3} \tag{2.28}\\
& y_{1}=y_{2}=y_{3} .
\end{array}
$$

M_{0} is the intersection of M_{1}, M_{2} and M_{3}.
It is obvious that if $C r=r$, then $C(T r)=(T r)$. Hence, if a point r lies on an invariant manifold of a commuter C, then (Tr) lies also on the manifold. Therefore, if a fixed point of T^{N} lies on an invariant manifold M_{i}, then all fixed points of T^{N} lie on it. We call an orbit in-phase if all its elements lie on an invariant manifold M_{i}. Furthermore, we find a special period-doubling sequence for which all 2^{n} cycles ($n=0,1,2, \ldots$) lie on the invariant manifold M_{0}. In the next section, we will determine the period-doubling sequence for the orbits on M_{0} of equation (2.28).

3. Period doubling for orbits on \boldsymbol{M}_{0}

In this section, we numerically study period doubling for orbits on M_{0} of our map (2.1), confining ourselves to the symmetry restrictions (2.3) and (2.4), with the non-linear function f_{1} given by

$$
\begin{equation*}
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=2\left(C x_{1}+x_{1}^{2}\right)+2 E\left(x_{2}+x_{3}\right) \tag{3.1}
\end{equation*}
$$

where the term $2\left(C x_{1}+x_{1}^{2}\right)$ is the standard form of the non-linear function in the intensively studied two-dimensional Hénon map, C its parameter and E the coupling parameter. Its orbits on the manifold M_{0} are $x_{1}=x_{2}=x_{3}$ as well as $y_{1}=y_{2}=y_{3}$ (cf equation (2.28)). Although our map is special (with restrictions (2.3) and (2.4)) and the periodic orbits are also special (on M_{0}), the universality classes numerically found in this section for our special map and special orbits cover all universality classes found by a renormalisation calculation in $\S 4$ for the map (2.1) without those specialities.

3.1. Reduction to four-dimensional case

We introduce a coordinate transformation

$$
\begin{array}{ll}
X_{1}=\frac{1}{3}\left(x_{1}+x_{2}+x_{3}\right) & Y_{1}=\frac{1}{3}\left(y_{1}+y_{2}+y_{3}\right) \\
X_{2}=x_{1}-x_{2} & Y_{2}=y_{1}-y_{2} \tag{3.2}\\
X_{3}=x_{1}-x_{3} & Y_{3}=y_{1}-y_{3} .
\end{array}
$$

In these new coordinates, the map becomes

$$
\begin{equation*}
\boldsymbol{X}^{\prime}=-\boldsymbol{Y}+\boldsymbol{F}(\boldsymbol{X}) \quad \boldsymbol{Y}^{\prime}=\boldsymbol{X} \tag{3.3}
\end{equation*}
$$

where $\boldsymbol{X} \equiv\left(X_{1}, X_{2}, X_{3}\right)$ and $\boldsymbol{Y} \equiv\left(Y_{1}, Y_{2}, Y_{3}\right)$ are 3 -vectors and \boldsymbol{F} is a non-linear transformation, i.e.

$$
\begin{align*}
& \boldsymbol{F}(\boldsymbol{X})=\left(F_{1}(\boldsymbol{X}), F_{2}(\boldsymbol{X}), F_{3}(\boldsymbol{X})\right) \\
& F_{1}\left(X_{1}, X_{2}, X_{3}\right)=2\left[(C+2 E) X_{1}+X_{1}^{2}+\frac{2}{9}\left(X_{2}^{2}+X_{3}^{2}-X_{2} X_{3}\right)\right] \\
& F_{2}\left(X_{1}, X_{2}, X_{3}\right)=2\left[(C-E) X_{2}+\frac{1}{3}\left(-X_{2}^{2}+6 X_{1} X_{2}+2 X_{2} X_{3}\right)\right] \tag{3.4}\\
& F_{3}\left(X_{1}, X_{2}, X_{3}\right)=F_{2}\left(X_{1}, X_{3}, X_{2}\right) .
\end{align*}
$$

For the orbits on $M_{0}, X_{2}=Y_{2}=X_{3}=Y_{3}=0$. Thus X_{1} and Y_{1} coordinates of the in-phase orbits of the 6D map are just X_{1} and Y_{1} coordinates of the 2d Hénon mar

$$
\begin{equation*}
X_{1}^{\prime}=-Y_{1}+2\left(P X_{1}+X_{1}^{2}\right) \quad Y_{1}^{\prime}=X_{1} \tag{3.5}
\end{equation*}
$$

where $P=C+2 E$. The Jacobian matrix becomes, for the orbits on M_{0},

$$
\boldsymbol{J}=\left(\begin{array}{ccc}
\boldsymbol{J}_{1} & 0 & 0 \tag{3.6}\\
0 & \boldsymbol{J}_{2} & 0 \\
0 & 0 & \boldsymbol{J}_{3}
\end{array}\right)
$$

where J_{1}, J_{2} and J_{3} are 2×2 matrices,

$$
\begin{align*}
& J_{1}=\left(\begin{array}{cc}
2(C+2 E)+4 X_{1} & -1 \\
1 & 0
\end{array}\right) \\
& J_{2}=\left(\begin{array}{cc}
2(C-E)+4 X_{1} & -1 \\
1 & 0
\end{array}\right) \tag{3.7}\\
& J_{3}=\boldsymbol{J}_{2} .
\end{align*}
$$

Note that $J_{2}=J_{3}$ and $F_{3}\left(X_{1}, X_{2}, X_{3}\right)=F_{2}\left(X_{1}, X_{3}, X_{2}\right)$ in equation (3.4), both resulting from the symmetries of equations (2.3) and (2.4). Thus, bifurcation for orbits on M_{0} of symmetric volume-preserving six-dimensional maps reduces to that of fourdimensional maps which we have previously studied [8].

3.2. The stability diagram

The linear stability about a fixed point of a real symplectic even-dimensional (2 N dimensional) map is determined by the coefficients of the reduced characteristic polynomial $Q(\rho)$ of N th order, where ρ is the stability index

$$
\begin{equation*}
\rho=\lambda+1 / \lambda \tag{3.8}
\end{equation*}
$$

Here λ and $1 / \lambda$ are a pair of eigenvalues of the Jacobian matrix J. The stability diagram of symplectic six-dimensional maps has already been given [11] in terms of the coefficients of $Q(\rho)$.

In fact, the stability diagram can be simply given in terms of the stability indices ρ. Note that the number of solutions of $Q(\rho)=0$ is N, i.e. $\rho=\rho_{i}, i=1,2, \ldots, N . \rho_{i}$ could be complex. The stable region of six-dimensional volume-preserving maps is just a cube, see figure 1 (note that our $\rho_{1} \rho_{2} \rho_{3}$ space in figure 1 is a real space and that the complex unstable region is out of our real space). Obviously, the boundaries of the stable region are given by:
(i) $\quad \rho_{i}=-2$ for period-doubling bifurcation;
(ii) $\quad \rho_{i}=+2$ for tangent bifurcation; and
(iii) $\quad \rho_{i}=\rho_{j}$, where $i \neq j$ (and entering the complex unstable region, of course), for complex bifurcation
where $i=1,2, \ldots, N$. These bifurcation conditions are valid not only for symplectic

Figure 1. Stability diagram for six-dimensional volume-preserving maps in terms of the stability indices ρ_{1}, ρ_{2} and ρ_{3}. Within the cube is the stable region. The shaded plane is redrawn in the inset. Note that our $\rho_{1} \rho_{2} \rho_{3}$ space is a real space and that the complex unstable region is out of this real space.
maps, but also for volume-preserving 2 N -dimensional real maps. Indeed, all eigenvalues of the Jacobian at an elliptic fixed point of any real 2 N -dimensional volumepreserving maps should be on the unit circle, i.e.

$$
\begin{equation*}
\left(e^{i \theta_{i}}, e^{-i \theta_{1}} ; e^{i \theta_{2}}, e^{-i \theta_{2}}, \ldots ; e^{i \theta_{v}}, e^{-i \theta_{v}}\right) \tag{3.10}
\end{equation*}
$$

That is, all eigenvalues appear in reciprocal pairs, and the stability indices ρ_{i} of equation (3.8) are well defined, and finally the bifurcation condition (3.9) holds for volumepreserving 2 N -dimensional real maps.

The stable region for four-dimensional volume-preserving real maps is a square in the $\rho_{1} \rho_{2}$ plane, enclosed by $\rho_{1}=-2, \rho_{2}=-2, \rho_{1}=2$ and $\rho_{2}=2$. The diagonal of the square, $\rho_{1}=\rho_{2}$, is the complex bifurcation line, see the inset of figure 1. The stable region for six-dimensional volume-preserving real maps is the cube in figure 1. It is divided into two parts by the complex bifurcation plane $\rho_{2}=\rho_{3}$ (or $\rho_{1}=\rho_{2}$, or $\rho_{1}=\rho_{3}$). Period doubling occurs when we cross the plane $\rho_{1}=-2$, or $\rho_{2}=-2$, or $\rho_{3}=-2$.

3.3. Period-doubling sequences

For the orbits on M_{0} of the map (3.3) discussed in $\S 3.1$ it is easy now to find out the period-doubling sequence. Since $\rho_{2}=\rho_{3}$ (cf equation (3.7)), period-doubling bifurcation occurs when we cross the line AC in figure 1 if we choose $\rho_{1}=-2$ as the condition for period-doubling bifurcation. In other words, the inset of figure 1 is just the stability diagram. Together with the facts that our 6D map can be reduced to a 4D map (cf $\S 3.1$), we conclude that period-doubling sequences in our symmetric 6D volumepreserving maps for the orbits on M_{0} are the same sequences in symmetric 4D volumepreserving maps with $X_{3}=X_{2}$ and $Y_{3}=Y_{2}$. Therefore all results for the fourdimensional symmetric volume-preserving maps [8] are still valid for the present six-dimensional maps. These results are: stable regions bifurcate in the parameter (CE) plane; the first Feigenbaum constant $\delta_{1}=8.721 \ldots$ for all cases; the second Feigenbaum constant $\delta_{2}=-4.404 \ldots, 4.000 \ldots$ and -2.000 for the regular E, L and U paths, respectively; $\delta_{2}=-15.1 \ldots$ for the exceptional L and U paths; there are three universality (E, L and U) classes; etc. In other words, for the orbits on M_{0} of our symmetric 6D volume-preserving map (2.1) with the restrictions (equations (2.3) and (2.4)) on the non-linear functions and with only two parameters introduced (cf equation (3.1)), we numerically found the three universality (E, L and U) classes characterised by the second Feigenbaum constant $\delta_{2}=-4.404 \ldots, 4$ and -2 , respectively. These classes are identical to the three classes in 4 D symmetric volume-preserving maps. Furthermore, these classes will be recovered by the renormalisation in the map (2.1) without the restrictions on the non-linear functions (see the next section).

4. Renormalisation for six-dimensional volume-preserving maps

In all previous sections, we have studied symmetric (i.e. with restrictions (2.3) and (2.4)) six-dimensional volume-preserving maps. In this section, we will perform a renormalisation calculation for asymmetric (i.e. without those restrictions) sixdimensional volume-preserving maps. All results given in this section (for asymmetric maps) are of course valid for symmetric maps as well.

We study the asymmetric 6D map in the DeVogelaere form [10]

$$
T:\left\{\begin{array}{l}
X_{i}^{\prime}=-A_{i} Y_{i}+F_{i}(\boldsymbol{X}) \tag{4.1}\\
Y_{i}^{\prime}=\left(1 / A_{i}\right)\left[X_{i}-F_{i}\left(\boldsymbol{X}^{\prime}\right)\right]
\end{array} \quad i=1,2,3\right.
$$

where $X \equiv\left(X_{1}, X_{2}, X_{3}\right)$ and $Y \equiv\left(Y_{1}, Y_{2}, Y_{3}\right)$ are 3-vectors, $A_{i}(i=1,2,3)$ are parameters, and $\boldsymbol{F}(\boldsymbol{X})=\left(F_{1}(\boldsymbol{X}), F_{2}(\boldsymbol{X}), F_{3}(\boldsymbol{X})\right)$ is a non-linear transformation,

$$
\begin{equation*}
F_{i}(\boldsymbol{X})=B_{i}+\sum_{j=1}^{3}\left(C_{i j} X_{j}+D_{i j} X_{j}^{2}\right)+G_{i 1} X_{2} X_{3}+G_{i 2} X_{3} X_{1}+G_{i 3} X_{1} X_{2} \tag{4.2}
\end{equation*}
$$

Here $B_{i}, C_{i j}, D_{i j}, G_{i j}(i, j=1,2,3)$ are parameters. This map is truncated at quadratic terms $X_{1}^{2}, X_{2}^{2}, X_{3}^{2}$ and terms Y_{1}, Y_{2}, Y_{3}. We take this map as an approximation to the map that is fixed under the renormalisation operator. In other words, we truncate from the infinite-dimensional space of maps to a finite-dimensional space. The renormalisation of map T is

$$
\begin{equation*}
\boldsymbol{R}(T)=\boldsymbol{B} T^{2} \boldsymbol{B}^{-1} \tag{4.3}
\end{equation*}
$$

where \boldsymbol{R} is the period-doubling renormalisation operator composed of squaring (T^{2}) and rescaling (\boldsymbol{B}) operators. The latter is defined such that the map is a fixed point of the renormalisation operator. $\boldsymbol{R}(T)$ is also truncated to be within the finitedimensional space.

We note that the map (4.1) is equivalent to the following Hénon-like map:

$$
\begin{equation*}
x_{i}^{\prime}=-A_{i} y_{i}+2 f_{i}(x, u, w) \quad y_{i}^{\prime}=\left(1 / A_{i}\right) x_{i} \tag{4.4}
\end{equation*}
$$

after the DeVogelaere transformation [10]

$$
\begin{equation*}
x=X \quad y=Y+f(X) \tag{4.5}
\end{equation*}
$$

where, as before, $\boldsymbol{x} \equiv\left(x_{1}, x_{2}, x_{3}\right), \boldsymbol{y} \equiv\left(y_{1}, y_{2}, y_{3}\right), \boldsymbol{f}(\boldsymbol{x}) \equiv\left(f_{1}(\boldsymbol{x}), f_{2}(\boldsymbol{x}), f_{3}(\boldsymbol{x})\right)$. Note that the Hénon-like map (4.4) identifies, when the parameters $A_{1}=A_{2}=A_{3}=1$, the numerically studied map (2.1), but without the restrictions of equations (2.3) and (2.4). The Hénon-like map (4.4) can be written in a second-order difference form:

$$
\begin{equation*}
x_{i+1}+x_{i-1}=2 f\left(x_{i}\right) \tag{4.6}
\end{equation*}
$$

4.1. Reduction of the number of parameters

The map (4.1) with equation (4.2) has thirty-three parameters. However, this number of parameters can be reduced. First we notice that a fixed map under a coordinate translation is still a fixed map. Considering the equivalent map (4.6), we make translations in x_{1}, x_{2} and x_{3} such that

$$
\begin{equation*}
B_{2}=B_{3}=0 . \tag{4.7}
\end{equation*}
$$

Notice that all B_{1}, B_{2} and B_{3} cannot vanish simultaneously because a complex coordinate transformation is not allowed here. Second we notice that there is neither a Y_{2} term nor a Y_{3} term in the X_{1}^{\prime} equation of the DeVogelaere-like map (4.1). Hence neither has the renormalised map $\boldsymbol{R}(T)$. The expression for $X_{1}^{\prime \prime}$ in $\boldsymbol{R}(T)$ can be found easily:

$$
\begin{align*}
\boldsymbol{R}(T): \quad X_{1}^{\prime \prime} & =-A_{1} Y_{1}^{\prime}+f_{1}\left(\boldsymbol{X}^{\prime}\right) \\
& =-X_{1}+2 f_{1}\left(\boldsymbol{X}^{\prime}\right) \\
& =\ldots-A_{2} Y_{2}\left(C_{12}+B_{1} G_{13}\right)-A_{3} Y_{3}\left(C_{13}+B_{1} G_{12}\right)+\ldots \tag{4.8}
\end{align*}
$$

In order for $\boldsymbol{R}(T)$ to be still in the DeVogelaere form of equation (4.1), the coefficients of Y_{2} and Y_{3} in equation (4.8) should be zero, i.e.

$$
\begin{align*}
& C_{12}+B_{1} G_{13}=0 \tag{4.9}\\
& C_{13}+B_{1} G_{12}=0 \tag{4.10}
\end{align*}
$$

Similarly, we have more constraints from expressions for $X_{2}^{\prime \prime}$ and $X_{3}^{\prime \prime}$ of $\boldsymbol{R}(T)$:

$$
\begin{array}{ll}
C_{21}+2 B_{1} D_{21}=0 & C_{23}+B_{1} G_{22}=0 \\
C_{31}+2 B_{1} D_{31}=0 & C_{32}+B_{1} G_{33}=0 . \tag{4.12}
\end{array}
$$

In addition, we have two more constraints since there are no constant terms in $X_{2}^{\prime \prime}$ and $X_{3}^{\prime \prime}$:

$$
\begin{equation*}
C_{i 1}+B_{1} D_{i 1}=0 \quad i=2,3 . \tag{4.13}
\end{equation*}
$$

The solutions of these constraints (4.9)-(4.13), after a translation $X_{1}-B_{1} \rightarrow X_{1}$, are

$$
\begin{equation*}
C_{12}=C_{13}=C_{21}=C_{23}=C_{31}=C_{32}=D_{21}=D_{31}=G_{12}=G_{13}=G_{22}=G_{33}=0 \tag{4.14}
\end{equation*}
$$

In other words, some terms should not appear in the non-linear functions of the map (4.2). Thus the non-linear functions can now be simplified as

$$
\begin{align*}
& F_{1}(\boldsymbol{X})=B+C X_{1}+D X_{1}^{2}+F_{u} X_{2}^{2}+F_{w} X_{3}^{2}+G_{1} X_{2} X_{3} \\
& F_{2}(\boldsymbol{X})=E_{u} X_{2}+F_{1} X_{2}^{2}+F_{2} X_{3}^{2}+G_{u} X_{1} X_{2}+G_{2} X_{2} X_{3} \tag{4.15}\\
& F_{3}(\boldsymbol{X})=E_{w} X_{3}+F_{3} X_{2}^{2}+F_{4} X_{3}^{2}+G_{w} X_{1} X_{3}+G_{3} X_{2} X_{3}
\end{align*}
$$

where we have introduced new parameters: $B, C, D, E_{u}, E_{w}, F_{u}, F_{w}, G_{u}, G_{w}, F_{j}, G_{i}$ ($i=1,2,3 ; j=1,2,3,4$). Together with A_{1}, A_{2} and A_{3}, we have now nineteen parameters.

4.2. Renormalisation calculation

Consider the map (4.1) with equation (4.15) as an approximation of the fixed map. We first iterate the map twice and then rescale $X_{1}, Y_{1}, X_{2}, Y_{2}, X_{3}, Y_{3}$ by $\alpha_{1}, \beta_{1}, \alpha_{2}$, $\beta_{2}, \alpha_{3}, \beta_{3}$, respectively. The expression for $X_{1}^{\prime \prime}$ of the renormalised map $\boldsymbol{R}(T)$ is given by

$$
\begin{align*}
X_{1}^{\prime \prime}=-Y_{1}(2 & \left.\frac{\alpha_{1}}{\beta_{1}} A_{1} H_{1}\right)+\left[\alpha_{1} B\left(2+C+H_{1}\right)\right]+X_{1}\left(-1+2 C H_{1}\right) \\
& +X_{1}^{2}\left(\frac{2}{\alpha_{1}} D\left(C^{2}+H_{1}\right)\right)+X_{2}^{2}\left(2 \frac{\alpha_{1}}{\alpha_{2}^{2}} F_{u}\left(E_{u}^{2}+H_{1}\right)\right) \\
& +X_{3}^{2}\left(2 \frac{\alpha_{1}}{\alpha_{3}^{2}} F_{w}\left(E_{w}+H_{1}\right)\right)+X_{2} X_{3}\left(2 \frac{\alpha_{1}}{\alpha_{2} \alpha_{3}} G_{1}\left(E_{u} E_{w}+H_{1}\right)\right) \tag{4.16}
\end{align*}
$$

where $H_{1}=C+2 B D$. Since $\boldsymbol{R}(T)$ should have the form of the original map (4.1) with (4.15), the operator \boldsymbol{R} is a map from the parameter vector $P \equiv\left(A_{i}, B, C, D, \ldots\right)$ onto
$\boldsymbol{P}^{\prime} \equiv\left(A_{i}^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, \ldots\right)$. Some of these mapping (from \boldsymbol{P} onto \boldsymbol{P}^{\prime}) equations are, from (4.16),

$$
\begin{array}{ll}
Y_{1}: & A_{1}^{\prime}=2\left(\alpha_{1} / \beta_{1}\right) A_{1} H_{1} \\
X_{1}^{0}: & B^{\prime}=\alpha_{1} B\left(2+C+H_{1}\right) \\
X_{1}: & C^{\prime}=-1+2 C H_{1} \\
X_{1}^{2}: & D^{\prime}=\left(2 / \alpha_{1}\right) D\left(C^{2}+H_{1}\right) \tag{4.17}\\
X_{2}^{2}: & F_{u}^{\prime}=2\left(\alpha_{1} / \alpha_{2}^{2}\right) F_{u}\left(E_{u}^{2}+H_{1}\right) \\
X_{3}^{2}: & F_{w}^{\prime}=2\left(\alpha_{1} / \alpha_{3}^{2}\right) F_{w}\left(E_{w}^{2}+H_{1}\right) \\
X_{2} X_{3}: & G_{1}^{\prime}=2\left(\alpha_{1} / \alpha_{2} \alpha_{3}\right) G_{1}\left(E_{u} E_{w}+H_{1}\right) .
\end{array}
$$

Similarly, from expressions for the $X_{2}^{\prime \prime}$ and $X_{3}^{\prime \prime}$ of $\boldsymbol{R}(T)$, we have additional mapping equations listed in equations (A1.1) and (A1.2) of appendix 1. In all these mapping equations, equations (4.17), (A1.1) and (A1.2), we set $\boldsymbol{P}^{\prime}=\boldsymbol{P}=\boldsymbol{P}_{\infty}$, and then solve the equations for $\boldsymbol{P}_{\infty} . \boldsymbol{P}_{\infty}$ is the fixed value of the parameter \boldsymbol{P} under the renormalisation. Substituting the found values of \boldsymbol{P}_{∞} into the non-linear functions, equation (4.15), we finally obtain the fixed map of equation (4.1) (see appendix 2 for details). The fixed maps for the 6D DeVogelaere-like map (4.1) are, after DeVogelaere transformation (4.5), as follows.
(i) Three uncoupled two-dimensional area-preserving fixed maps:

$$
\begin{equation*}
x_{i}^{\prime}=-y_{i}+2\left(C_{1} x_{i}+x_{i}^{2}\right) \quad y_{i}^{\prime}=x_{i} \quad i=1,2,3 \tag{4.18}
\end{equation*}
$$

where $C_{1}=-1.2678 \ldots$ In this case, the renormalisation gives $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha \equiv$ $-4.0280 \ldots, \quad \beta_{1}=\beta_{2}=\beta_{3}=\beta \equiv 16.5338 \ldots \quad$ and $\quad \delta_{1}=\delta \equiv 8.9474 \ldots, \quad \delta_{2}=\delta_{3}=$ $-4.4510 \ldots$, where α, β and δ are the two-dimensional scaling factors determined by the renormalisation for 2D area-preserving maps [1], and δ_{1}, δ_{2} and δ_{3} the relevant eigenvalues of the following matrices respectively,

$$
\begin{align*}
& \left.\frac{\partial\left(B^{\prime}, C^{\prime}\right)}{\partial(B, C)}\right|_{P_{\infty}} \equiv\left[\begin{array}{ll}
\frac{\partial B^{\prime}}{\partial B} & \frac{\partial B^{\prime}}{\partial C} \\
\frac{\partial C^{\prime}}{\partial B} & \frac{\partial C^{\prime}}{\partial C}
\end{array}\right]_{P_{\infty}} \\
& \left.\frac{\partial\left(E_{u}^{\prime}, G_{u}^{\prime}\right)}{\partial\left(E_{u}, G_{u}\right)}\right|_{P_{\infty}} \tag{4.19}\\
& \left.\frac{\partial\left(E_{w}^{\prime}, G_{w}^{\prime}\right)}{\partial\left(E_{w}, G_{w}\right)}\right|_{\boldsymbol{P}_{\infty}}
\end{align*}
$$

The perturbation around the fixed maps, $\left(\boldsymbol{\partial} \boldsymbol{P}^{\prime} / \partial \boldsymbol{P}\right)_{\boldsymbol{P}_{x}}$, contains in its diagonal the three matrices of equation (4.19) and

$$
\begin{equation*}
\left.\frac{\partial A_{i}^{\prime}}{\partial A_{i}}\right|_{\boldsymbol{P}_{x}}=\left.\frac{\partial F_{K}^{\prime}}{\partial F_{K}}\right|_{\boldsymbol{P}_{x}}=\left.\frac{\partial F_{j}^{\prime}}{\partial F_{j}}\right|_{\boldsymbol{P}_{x}}=\left.\frac{\partial G_{i}^{\prime}}{\partial G_{i}}\right|_{\boldsymbol{P}_{x}} \equiv 1 \tag{4.20}
\end{equation*}
$$

where $i=1,2,3 ; K: u, w ; j=1,2,3,4$. The matrices of (4.19) have, in addition to δ_{1},
δ_{2} and δ_{3}, eigenvalues that arise from coordinate transformations and the truncation at terms of $X_{1}^{2}, X_{2}^{2}, X_{3}^{2}, Y_{1}, Y_{2}, Y_{3}$.
(ii) The second 6D fixed map: two two-dimensional area-preserving fixed maps coupled with a two-dimensional linear map:

$$
\begin{align*}
& x_{i}^{\prime}=-y_{i}+2\left(C_{1} x_{i}+x_{i}^{2}\right)+2 x_{3}^{2} \quad y_{i}^{\prime}=x_{i} \quad i=1,2 \tag{4.21}\\
& x_{3}^{\prime}=-y_{3}+2 C_{2} x_{3} \quad y_{3}^{\prime}=x_{3}
\end{align*}
$$

where C_{2} could be 1 or $-\frac{1}{2}$. In this case, $\alpha_{1}=\alpha_{2}=\alpha, \alpha_{3}= \pm 2.9116 \ldots$ or $\pm 3.8104 \ldots$ (for $C_{2}=1$ or $-\frac{1}{2}$); $\beta_{1}=\beta_{2}=\beta, \beta_{3}=2 \alpha_{3}$ or $-\alpha_{3}$ (for $C_{2}=1$ or $-\frac{1}{2}$); $\delta_{1}=\delta, \delta_{2}=$ $-4.4510 \ldots, \delta_{3}=4$ or -2 .
(iii) The third 6D fixed map: one two-dimensional area-preserving fixed map coupled with two two-dimensional linear maps:

$$
\begin{array}{ll}
x^{\prime}=-y+2\left(C_{1} x+x^{2}\right)+2 u^{2}+2 w^{2} & y^{\prime}=x \\
u^{\prime}=-v+2 C_{2} x \quad v^{\prime}=u \tag{4.22}\\
w^{\prime}=-z+2 C_{2}^{\prime} w \quad z^{\prime}=w
\end{array}
$$

where C_{2} (or C_{2}^{\prime}) could be 1 or $-\frac{1}{2}$. In this case, $\alpha_{1}=\alpha, \alpha_{2}= \pm 2.9116 \ldots$ or $\pm 3.8104 \ldots$ $\left(\right.$ for $C_{2}=1$ or $-\frac{1}{2}$), $\alpha_{3}= \pm 2.9116 \ldots$ or $\pm 3.8104 \ldots\left(\right.$ for $C_{2}^{\prime}=1$ or $-\frac{1}{2}$); $\beta_{1}=\beta, \beta_{2}=2 \alpha_{2}$ or $-\alpha_{2}\left(\right.$ for $C_{2}=1$ or $-\frac{1}{2}$), $\beta_{3}=2 \alpha_{3}$ or $-\alpha_{3}\left(\right.$ for $C_{2}^{\prime}=1$ or $-\frac{1}{2}$); $\delta_{1}=\delta, \delta_{2}=4$ or -2 (for $C_{2}=1$ or $-\frac{1}{2}$), $\delta_{3}=4$ or $-2\left(\right.$ for $C_{2}^{\prime}=1$ or $-\frac{1}{2}$).

As we can see from these fixed maps, the second Feigenbaum constant δ_{2} could be one of the three values ($\delta_{2}=-4.4 \ldots, 4,-2$). No more δ_{2} values have been found. The three δ_{2} values agree with the numerical results, cf § 3.3.

5. Conclusion

We have obtained in $\S 3$ the period-doubling sequences for orbits on M_{0} of symmetric six-dimensional volume-preserving maps (equation (2.1)) with several restrictions (equations (2.3) and (2.4)) on the non-linear function, and with only two parameters (cf equation (3.1)). For this special sequence of our special map, period-doubling behaviour is the same as in symmetric four-dimensional volume-preserving maps. Also, we have performed in $\S 4$ the renormalisation calculation for asymmetric (without those specialities) DeVogelaere-like six-dimensional maps, and found that the fixed maps are very similar to those of four-dimensional maps. In both the numerical and the renormalisation work, the three universality (E, L and U) classes have been obtained. The classes are characterised by their own second Feigenbaum constant ($\delta_{2}=-4.4 \ldots$, $4,-2$ respectively). They are identical to those in the 4D case. However, we have not tried a numerical search for period-doubling sequences in asymmetric six-dimensional volume-preserving maps. Furthermore, the maps studied in this paper are three coupled 2D area-preserving maps, such as equations (2.1) and (4.1). A general 6D volumepreserving map is unnecessary in this (coupling) form. Finally, for 6 D volumepreserving maps there are three stability indices (cf §3.3) and thus a three-parameter family of 6D volume-preserving maps should be considered. I hope that this work can serve as a stepping stone to a complete understanding of period doubling in 6D volume-preserving maps.

Acknowledgments

I would like to thank Drs R H G Helleman and D B Creamer for useful discussions. This work was supported by the US Department of Energy under contract no DE-AC0384ER40182.

Appendix 1

Similarly to what we did in the text in order to get the mapping equations (4.17) from the expression for $X_{1}^{\prime \prime}$, we obtain the following additional mapping equations from the expression for $X_{2}^{\prime \prime}$ of the renormalisation map $\boldsymbol{R}(T)$:

$$
\begin{array}{ll}
Y_{2}: & A_{2}^{\prime}=2\left(\alpha_{2} / \beta_{2}\right) A_{2} H_{2} \\
X_{2}: & E_{u}^{\prime}=-1+2 E_{u} H_{2} \\
X_{2}^{2}: & F_{1}^{\prime}=2\left(1 / \alpha_{2}\right) F_{1}\left(H_{2}+E_{u}^{2}\right) \\
X_{3}^{2}: & F_{2}^{\prime}=2\left(\alpha_{2} / \alpha_{3}^{2}\right) F_{2}\left(H_{2}+E_{w}^{2}\right) \tag{A1.1}\\
X_{1} X_{2}: & G_{u}^{\prime}=2\left(1 / \alpha_{1}\right) G_{u}\left(H_{2}+C E_{u}\right) \\
X_{2} X_{3}: & G_{2}^{\prime}=2\left(1 / \alpha_{3}\right) G_{2}\left(H_{2}+E_{u} E_{w}\right)
\end{array}
$$

where $H_{2}=E_{u}+B G_{u}$. We also have, from the expression for $X_{3}^{\prime \prime}$,

$$
\begin{array}{ll}
Y_{3}: & A_{3}^{\prime}=2\left(\alpha_{3} / \beta_{3}\right) A_{3} H_{3} \\
X_{3}: & E_{w}^{\prime}=-1+2 E_{w} H_{3} \\
X_{2}^{2}: & F_{3}^{\prime}=2\left(\alpha_{3} / \alpha_{2}^{2}\right) F_{3}\left(H_{3}+E_{u}^{2}\right) \\
X_{3}^{2}: & F_{4}^{\prime}=2\left(1 / \alpha_{3}\right) F_{4}\left(H_{3}+E_{w}^{2}\right) \tag{A1.2}\\
X_{1} X_{3}: & G_{w}^{\prime}=2\left(1 / \alpha_{1}\right) G_{w}\left(H_{3}+C E_{w}\right) \\
X_{2} X_{3}: & G_{3}^{\prime}=2\left(1 / \alpha_{2}\right) G_{3}\left(H_{3}+E_{u} E_{w}\right)
\end{array}
$$

where $H_{3}=E_{w}+B G_{w}$.

Appendix 2

In this appendix, we describe how to obtain the fixed maps (4.18), (4.21) and (4.22) from the mapping equations (4.17), (A1.1) and (A1.2).

In order to determine the fixed values $\left(\boldsymbol{P}_{\infty}\right)$ of the parameter under the renormalisation, we set $\boldsymbol{P}^{\prime}=\boldsymbol{P}=\boldsymbol{P}_{\infty}$ in the mapping equations, and then solve them for \boldsymbol{P}_{∞}. Notice that the first five equations in (4.17) and the first, second and fifth equations in (A1.1) can be solved independently from the other equations. They are equations for B, C, $E_{u}, G_{u}, \alpha_{1}, \alpha_{2}, \beta_{1}$ and β_{2}. They are just the same equations as those in 4D symmetric volume-preserving maps, equation (3.2) in [9]. Thus their solutions are of course just those for the 4D case, listed as E, L and U maps in table 1 of [9]. Similar discussions are valid for the first five equations in (4.17) and the first, second and fifth in (A1.2). In other words, the fixed values of parameters $B, C, E_{u}, G_{u}, E_{w}, G_{w}$ and the scaling factors $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3}$ have been determined by the first five equations in (4.17) and first, second and fifth in (A1.1) and (A1.2).

The remaining equations (i.e. the sixth and seventh equations in (4.17), and the third, forth and sixth in (A1.1) and (A1.2)) can be used to determine the remaining parameters. We first note that there is no contradiction between the fifth and sixth equations in (4.17) for all cases ($E_{u}=E_{w}=C, 1$ or $-\frac{1}{2}$; or $E_{u} \neq E_{w}$). We also note that the parameters $A_{1}, A_{2}, A_{3}, D, F_{u}, F_{w}$ are scales in $Y_{1}, Y_{2}, Y_{3}, X_{1}, X_{2}, X_{3}$ and that the parameters F_{j} and $G_{i}(i=1,2,3, j=1,2,3,4)$ could be any values if $E_{u}=E_{w}$, and $F_{j}=G_{i}=0$ if $E_{u} \neq E_{w}$. These are required by the 'remaining' equations mentioned above. Hence we discuss the cases $E_{u}=E_{w}$ and $E_{u} \neq E_{w}$ separately below.

The case of $E_{u}=E_{w}$ contains three possibilities: $E_{u}=E_{w}=C, 1$ or -1 . When $E_{u}=E_{w}=C$, we have $G_{u}=G_{w}=2, \alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha(\equiv-4.0280 \ldots), \beta_{1}=\beta_{2}=\beta_{3}=$ $\beta(\equiv 16.5338 \ldots)$ and $\delta_{1}=\delta(\equiv 8.9474 \ldots), \delta_{2}=\delta_{3}=-4.4510 \ldots$. Since the parameters $A_{1}, A_{2}, A_{3}, D, F_{u}, F_{w}$ and F_{j}, G_{i} are arbitrary, we set $A_{1}=A_{2}=A_{3}=D=1, F_{u}=F_{w}=$ $G_{1}=-2, F_{1}=F_{2}=0, F_{3}=F_{4}=3, G_{2}=G_{3}=2$. Thus the fixed map (4.18) is obtained after a coordinate transformation $X_{1}+X_{2}+X_{3} \rightarrow X_{1}, Y_{1}+Y_{2}+Y_{3} \rightarrow Y_{1}, X_{1}+2 X_{2}+$ $X_{3} \rightarrow X_{2}, \quad Y_{1}+2 Y_{2}+Y_{3} \rightarrow Y_{2}, X_{1}+X_{2}+2 X_{3} \rightarrow X_{3}, \quad Y_{1}+Y_{2}+2 Y_{3} \rightarrow Y_{3}$ and after the DeVogelaere transformation (4.5). In the cases of $E_{u}=E_{w}=1$ or $-\frac{1}{2}$, we set $A_{1}=A_{2}=$ $A_{3}=D=F_{u}=F_{w}=1$ and $F_{i}=G_{j}=0$. Thus we obtain the fixed map (4.22) with $C_{2}=$ $C_{2}^{\prime}=1$ or $-\frac{1}{2}$.

In the case of $E_{u} \neq E_{w}$, we know that $F_{i}=G_{j}=0$. We again set the scales in X, Y, U, V, W, Z equal to 1 , i.e. $A_{1}=A_{2}=A_{3}=D=F_{u}=F_{w}=1$. The fixed map (4.21) is obtained if either E_{u} or E_{w} is equal to C; otherwise the fixed map (4.22) is obtained.

References

[1] Greene J M, MacKay R S, Vivaldi F and Feigenbaum M J 1981 Physica 3D 468
[2] Bountis T C 1981 Physica 3D 577
[3] Bountis T C and Helleman R H G 1981 J. Math. Phys. 221867
[4] Collet P, Eckmann J-P and Koch H 1981 Physica 3D 457
[5] MacKay R S 1982 PhD dissertation Princeton University
[6] Janssen T and Tjon J A 1983 J. Phys. A: Math. Gen. 16 673, 697
[7] Mao J-m, Satija I and Hu B 1985 Phys. Rev. A 32 1927; 1986 Phys. Rev. A 344325
[8] Mao J-m and Helleman R H G 1987 Phys. Rev. A 351847
[9] Mao J-m and Greene J M 1987 Phys. Rev. A 353911
[10] DeVogelaere R 1958 Theory of Nonlinear Oscillations vol IV, ed S Lefschetz p 53; 1962 Technical Report 62-2 Department of Mathematics, University of California, Berkeley
[11] Howard J E and MacKay R S 1986 unpublished

