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Period doubling in six-dimensional symmetric volume- 
preserving maps 
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Center for Studies of Nonlinear Dynamics?, La Jolla Institute, 10280 N Torrey Pines Road, 
Suite 260, La Jolla, California 92037, USA 

Received 6 May 1987 

Abstract. Period doubling in three symmetrically coupled two-dimensional area-preserving 
maps is numerically studied. It is found that there is a two-dimensional manifold on which 
all period-2" ( n  = 0, 1 ,2 , .  . .) orbits of a period-doubling bifurcation sequence lie. On this 
manifold, the universality classes of period doubling are just the three classes for two 
symmetrically coupled two-dimensional area-preserving maps, each characterised by its 
own Feigenbaum constants, reported by Mao and Helleman. It is also reported that, for 
three non-symmetrically coupled two-dimensional area-preserving maps, three maps which 
are fixed under the renormalisation operator have been found. The relevant eigenvalues 
of perturbation around the fixed maps are again the same as those found for two non- 
symmetrically coupled two-dimensional area-preserving maps, by Mao and Greene. The 
above-mentioned numerical and renormalisation results for the six-dimensional maps agree 
with each other. 

1. Introduction 

A transition from periodic motion to chaotic motion in Hamiltonian systems with N 
degrees of freedom can be studied via the period-doubling route of volume-preserving 
( 2 N  - 2)-dimensional maps. For N = 2, period doubling in two-dimensional (ZD) 
area-preserving maps, such as the Htnon map 

x' = - y  +f( x)  y ' = x  (1.1) 

has been extensively studied [ 1-41, For N = 3, period doubling in four-dimensional 
( 4 ~ )  volume-preserving maps has attracted more and more interest in recent years 
[5-91. Using the following symmetric 4~ volume-preserving maps, i.e. two symmetri- 
cally coupled two-dimensional area-preserving maps, 

period doubling has been studied numerically [8] and by a renormalisation calculation 
[9]. In the numerical study, the 4~ maps have two parameters, and thus there are two 
convergence rates of the parameters (i.e. Feigenbaum constants), 6, and tiz. It was 
found that 6, = 8.721 . . . (the same as 2~ area-preserving maps) in all cases and 
6* = -4.404.. . , 4.000. . . and -2.000.. . for almost all bifurcation paths in the three 

t Affiliated with the University of California, San Diego. 
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kinds of universality (E, L and U)  classes respectively. For the exceptional paths in 
the L and U classes, 8, = -15.1 . . . . In the renormalisation study for two non- 
symmetrically coupled ZD area-preserving maps, three maps which are fixed under the 
renormalisation operator have been determined and called the E, L and U maps. The 
relevant eigenvalues of the perturbation around the fixed maps are S 2  = -4 .4 . .  . , 4 
and -2 respectively for the E, L and U maps, and = 8.721 . . . for all three maps. 
These a1 and 

In this paper, we will study period doubling in symmetric six-dimensional ( 6 ~ )  
volume-preserving maps ( N  = 4), 

values agree with the numerical results. 

x :  = -Y,  + f ( X l ,  x2, x3) Y :  = X I  

xs= - Y 2 + f ( X 2 ,  X 3 r  x1) Y ;  = x2 (1.3) 

x;= - Y 3 + f ( X 3 ,  X I ,  x2) Y ; = x 3  

f ( X 1 ,  x2, X d  = f ( x 1 ,  x3, x2). 

i.e. three symmetrically coupled 2~ area-preserving maps with 

(1.4) 

Here f ( x l ,  x 2 ,  x3)  is a quadratic polynomial. Two or more parameters could be 
introduced into our 6~ map. However, only two parameters have been actually used 
in the map (see equation (3.1)) in the numerical study because the renormalisation 
work (see 0 4) shows that there are only two relevant directions at each fixed point of 
the renormalisation operator in function space. The 6~ map (1.3) has (see § 2) several 
lower-dimensional manifolds on each of which lie ail period-2" ( n  = 0,1,2,  . , .) orbits 
of the corresponding bifurcation sequence. One such manifold is x 1 = x 2 = x 3  and 
y ,  = y 2 = y 3 ,  a 2~ manifold, denoted by M O .  On this manifold M O ,  period-doubling 
sequences have been obtained (see 0 3). These are the same sequences for the 4~ map 
(1.2), with x3=x2  and y 3 = y 2  here for our 6~ map (1.3). Hence the same three 
universality classes (characterised by the same Feigenbaum constants SI and 6,) as in 
the 4~ case have been found. In 04, we perform a renormalisation calculation for 
three non-symmetrically coupled ZD area-preserving maps, which is of course valid 
for the symmetric case as well. Three maps which are fixed points of the renormalisation 
operator have been found. Around each fixed map, the eigenvalues of perturbation 
in the parameter space have been found to be identical to those for the two non- 
symmetrically coupled 2~ area-preserving maps. 

I would like to emphasise here that the 6~ maps studied in this paper are in a 
special class of 6~ maps. Probably, more universality classes of period doubling in a 
generic 6~ map are waiting to be discovered. 

2. Symmetries in 6~ symmetric volume-preserving maps 

Consider the 6~ map (1.3). It can be rewritten in the following vector form: 

x = -y +f(x) y = x  

where x and y are 3-vectors, and f a non-linear transformation, i.e. 

E 1 x2 I x 3 )  

Y E  ( Y l  I Y2 ,  Y 3 )  

f ( x )  E ( f l ( x l  3 x 2 ,  x 3 ) , f 2 ( x I  3 x 2 1  x 3 ) 7 f 3 ( x 1  3 x2, x 3 ) ) .  
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The symmetry of coupling (i.e. the three non-linear functions in map (1.3) are the 
same, with only their variables interchanged) takes the following form: 

f l  (XI 3 x2 3 x3) = f 2 ( x 3  9 XI  3 x2) = f 3  (x2 3 x3 3 XI  ). (2.3) 

f l ~ ~ l , ~ 2 . ~ 3 ~ = f i ~ ~ l , ~ 3 , ~ 2 ~ .  (2.4) 

The additional symmetry, equation (1.4), becomes 

As can be seen, our map is very special. However, a numerical study (see § 3) of 
period doubling in this special map gives all universality classes found in renormalisa- 
tion calculation (see § 4) for map (2.1) without those restrictions such as symmetries 
of equations (2.3) and (2.4). 

2.1. Symmetries 

An operator S is called a symmetry of a map T if S and ( TS)  are involutions [ 1,9,  101, 
i.e. 

s 2 = 1  (2.5) 

(TS) '=  1 .  (2.6) 
From this definition, we have 

STS = T-' 

ST- 'S  = T. 
The symmetry has a property that if r = (x, , y ,  , x,, y 2  , x3, y 3 )  is a fixed point of T N ,  

T N r = r  (2.9) 

T N ( S r )  = Sr. (2.10) 

then ( S r )  is also a fixed point of T N ,  

In fact, according to (2.8), r is also a fixed point of ( T - ' ) N  which can be rewritten, 
due to equations (2.8) and (2.5), as 

( 7-1) = ( S T S )  = STNS.  (2.11) 
Therefore equation (2.10) holds. 

denoted by So, SI ,  S2 and S 3 .  They are given by 
The present map (2.1) with the restrictions (2.3) and (2.4) has four symmetries, 

so: x: = y , ,  Y: = x, i = 1 ,2 ,3  (2.12) 

s, : x; = y ,  , y i  = x,; x: = y,, y :  = XI i = 2,3, j = 3 , 2  (2.13) 

s2 : 

S3 : 

x;= y,, y ; = x 2 ;  x: = y,, y :  = XI 

x; = y3 , y ;  = x,; x; = y,, y : = x, 

i = l , 3 , j = 3 ,  1 

i = 1 , 2 , j = 2 ,  1 .  

(2.14) 
(2.15) 

SI ,  S ,  and S3 are symmetries only if the additional symmetry of equation (2.4) is satisfied. 

2.2. Commuters 

We will call a product of any two symmetries, S, and S,, a commuter C,, [9]. According 
to equations (2.7) and (2.8), we write 

S,TS, = T-' (2.16) 
S,T-'S, = T. (2.17) 
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Substituting equation (2.16) into equation (2.17) and using equation (2.5), we thus 
prove that C, commute with T, 

C,T = TC,. (2.18) 

In terms of the four symmetries of our map (2.1), we could construct twelve 
commuters. Only five of them are independent: 

CO, = c10: 

CO2 = c 2 0 :  

CO3 = C30: 

x; = X I ,  y ;  = y,;  x: = x,, y: = y, i = 2,3 ,  j = 3 ,2  (2.19) 

x;= x2, y ;  = y , ;  x: = x,, y :  = y ,  

x; = x3, y ;  = y3; x: = x,, y :  = y, 

i = 1 , 3 ,  j = 3 , l  (2.20) 

i = 1 , 2 , j = 2 , 1  (2.21) 

(2.22) 
C12= C23= C31: x: = XI, y :  = Y, i = 1 , 2 , 3 , j  = 3 , 1 , 2  

i = 1 ,2 ,3 ,  j = 2 , 3 , 1 .  
(2.23) 

In addition, the identity I = SiSi ( i  = 0, 1 ,2 ,3 ) ,  of course, commutes with T. 

2.3. Invariant manifolds 

An invariant manifold of a commuter C (or any operator) is a subspace of the 
six-dimensional space such that, for any point r in the subspace, 

Cr = r. (2.24) 

The invariant manifold of the first three commuters (Col, CO2 and Co3) are four 
dimensional. They are given by 

M , :  x2 = x3, Y2 = Y3 (2.25) 

M2 : x3 = XI, Y3 = Y l  (2.26) 

M3 : X I  = x2, Yl = y 2 .  (2.27) 

However, the invariant manifolds of the last two commuters, C 1 2 (  = C23 = C 3 ] )  and 
CZ1( = C32 = C13), are two dimensional. They are identical, and given by 

MO: XI = x2 = X) 

Y1 =Y2=Y3. 
(2.28) 

MO is the intersection of M I ,  M2 and M 3 .  
It is obvious that if C r =  r, then C ( T r ) = ( T r ) .  Hence, if a point r lies on an 

invariant manifold of a commuter C, then ( T r )  lies also on the manifold. Therefore, 
if a fixed point of T N  lies on an invariant manifold M , ,  then all fixed points of TN 
lie on it. We call an orbit in-phase if all its elements lie on an invariant manifold Mi.  
Furthermore, we find a special period-doubling sequence for which all 2" cycles 
( n  = 0, 1 ,2 ,  . . .) lie on the invariant manifold MO. In the next section, we will determine 
the period-doubling sequence for the orbits on MO of equation (2.28). 
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3. Period doubling for orbits on MO 

In this section, we numerically study period doubling for orbits on MO of our map 
(2.1), confining ourselves to the symmetry restrictions (2.3) and (2.4), with the non-linear 
function f, given by 

f I ( X l ,  x2, x3) = 2(CX, + x:, +2E(x2+ x3) (3.1)  

where the term 2( C x ,  + x i )  is the standard form of the non-linear function in the 
intensively studied two-dimensional HCnon map, C its parameter and E the coupling 
parameter. Its orbits on the manifold MO are x ,  = x2 = x j  as well as y ,  = y2 = y3 (cf 
equation (2.28)). Although our map is special (with restrictions (2.3) and (2 .4))  and 
the periodic orbits are also special (on MO), the universality classes numerically found 
in this section for our special map and special orbits cover all universality classes 
found by a renormalisation calculation in § 4 for the map (2.1) without those specialities. 

3.1. Reduction to four-dimensional case 

We introduce a coordinate transformation 
y -1 

Y2=y,-y2 

y3 = Y1 - y 3 .  

1 - 3(yl +y2+Y3) x -1 
x2 = X I  - x2 

x3 = X I  - x3 

X'= - Y + F ( X )  Y' = x 

1 - 3 ( x l  + x2  + x 3 )  

In these new coordinates, the map becomes 

(3.2) 

(3.3) 
where X = ( X I ,  X 2 ,  X 3 )  and Y = ( Y I  , Y2 ,  Y3) are 3-vectors and F is a non-linear 
transformation, i.e. 

F ( X )  = ( F , ( X ) ,  F2(X) ,  F 3 ( X ) )  
F I ( X 1 ,  X2 ,  X3) = 2 [ (  C + 2 E ) X l +  X :  + $ ( X i  + X :  - X,X,)]  

F2( X I ,  X2,  X , )  = 2[ ( C - E ) X 2  + +( - X i  + 6XIX2 + 2X,X,)] 
(3.4) 

F 3 ( x l  3 x 2 ,  x 3 )  = F2(xI  9 X 3 r  x 2 ) *  

For the orbits on MO, X 2 =  Y 2 = X 3 =  Y 3 = 0 .  Thus X I  and Y,  coordinates of the 
in-phase orbits of the 6~ map are just X I  and Yl coordinates of the 2~ HCnon map 

X i = -  Y ,  + 2( P X ,  + x:, Yi = X I  (3.5) 
where P = C +2E. The Jacobian matrix becomes, for the orbits on MO, 

J =  0 J2 0 (3.6) i: 1: :) 
where J l ,  J 2  and J3 are 2 x 2  matrices, 

2 ( C  + 2 E )  + 4 X ,  

(3.7) -7 0 
2 ( C - E ) + 4 X ,  

J 2 = (  



3084 J-m Mao 

Note that 5, = J,  and F3(X1, X , ,  X , )  = F 2 ( X , ,  X , ,  X , )  in equation (3.4), both resulting 
from the symmetries of equations (2.3) and (2.4). Thus, bifurcation for orbits on MO 
of symmetric volume-preserving six-dimensional maps reduces to that of four- 
dimensional maps which we have previously studied [ 81. 

3.2. The stability diagram 

The linear stability about a fixed point of a real symplectic even-dimensional ( 2 N -  
dimensional) map is determined by the coefficients of the reduced characteristic 
polynomial Q ( p )  of Nth order, where p is the stability index 

p = A  + l / A .  (3.8) 
Here A and l / A  are a pair of eigenvalues of the Jacobian matrix J. The stability 
diagram of symplectic six-dimensional maps has already been given [ l l ]  in terms of 
the coefficients of Q ( p ) .  

In fact, the stability diagram can be simply given in terms of the stability indices p. 
Note that the number of solutions of Q ( p )  = 0 is N, i.e. p = pi, i = 1 , 2 , .  . . , N. pi could 
be complex. The stable region of six-dimensional volume-preserving maps is just a 
cube, see figure 1 (note that our ~ 1 ~ 2 ~ 3  space in figure 1 is a real space and that the 
complex unstable region is out of our real space). Obviously, the boundaries of the 
stable region are given by: 

(i) 

(iii) 

pi = -2 for period-doubling bifurcation; 

pi = pi, where i Zj (and entering the complex unstable region, of course), 

where i = 1,2, . . . , N. These bifurcation conditions are valid not only for symplectic 

(ii) pi = +2 for tangent bifurcation; and (3.9) 

for complex bifurcation 

Figure 1. Stability diagram for six-dimensional volume-preserving maps in terms of the 
stability indices pI  , p2 and p 3 .  Within the cube is the stable region. The shaded plane is 
redrawn in the inset. Note that our plp2p3 space is a real space and that the complex 
unstable region is out of this real space. 
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maps, but also for volume-preserving 2 N-dimensional real maps. Indeed, all eigen- 
values of the Jacobian at an elliptic fixed point of any real 2N-dimensional volume- 
preserving maps should be on the unit circle, i.e. 

(3.10) 

That is, all eigenvalues appear in reciprocal pairs, and the stability indices p, of equation 
(3.8) are well defined, and finally the bifurcation condition (3 .9)  holds for volume- 
preserving 2N-dimensional real maps. 

The stable region for four-dimensional volume-preserving real maps is a square in 
the plp2  plane, enclosed by p1 = -2 ,  p2 = - 2 ,  p1 = 2 and p2 = 2. The diagonal of the 
square, pl = pz ,  is the complex bifurcation line, see the inset of figure 1 .  The stable 
region for six-dimensional volume-preserving real maps is the cube in figure 1 .  I t  is 
divided into two parts by the complex bifurcation plane p2 = p3 (or p ,  = p 2 ,  or p1 = p3) .  
Period doubling occurs when we cross the plane p1  = -2, or p2 = -2, or p3 = -2. 

(elei, e-"~; el'>, e-le,. , * * ' ,  . el'\, e-", 1. 

3.3. Period-doubling sequences 

For the orbits on MO of the map (3.3) discussed in § 3.1 it is easy now to find out the 
period-doubling sequence. Since p2 = p3 (cf equation (3.7)), period-doubling bifurca- 
tion occurs when we cross the line AC in figure 1 if we choose p1 = -2 as the condition 
for period-doubling bifurcation. In other words, the inset of figure 1 is just the stability 
diagram. Together with the facts that our 6~ map can be reduced to a 4~ map (cf 
0 3 .  l ) ,  we conclude that period-doubling sequences in our symmetric 6~ volume- 
preserving maps for the orbits on MO are the same sequences in symmetric 4~ volume- 
preserving maps with X 3 = X 2  and Y3= Y z .  Therefore all results for the four- 
dimensional symmetric volume-preserving maps [8] are still valid for the present 
six-dimensional maps. These results are: stable regions bifurcate in the parameter 
(CE) plane; the first Feigenbaum constant ti1 = 8.721 . . . for all cases; the second 
Feigenbaum constant ti2 = -4.404. . . , 4 . 0 0 0 .  . . and -2.000 for the regular E, L and U 
paths, respectively; S 2  = -15 .1  . . . for the exceptional L and U paths; there are three 
universality (E, L and U) classes; etc. In other words, for the orbits on MO of our 
symmetric 6~ volume-preserving map (2.1) with the restrictions (equations (2.3) and 
(2.4)) on the non-linear functions and with only two parameters introduced (cf equation 
(3.1)), we numerically found the three universality (E, L and U) classes characterised 
by the second Feigenbaum constant 62 = -4.404. . . , 4 and - 2 ,  respectively. These 
classes are identical to the three classes in 4~ symmetric volume-preserving maps. 
Furthermore, these classes will be recovered by the renormalisation in the map (2.1) 
without the restrictions on the non-linear functions (see the next section). 

4. Renormalisation for six-dimensional volume-preserving maps 

In all previous sections, we have studied symmetric (i.e. with restrictions (2 .3)  and 
(2 .4 ) )  six-dimensional volume-preserving maps. In this section, we will perform a 
renormalisation calculation for asymmetric (i.e. without those restrictions) six- 
dimensional volume-preserving maps. All results given in this section (for asymmetric 
maps) are of course valid for symmetric maps as well. 

We study the asymmetric 6~ map in the DeVogelaere form [ 101 

(4 .1)  
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where X = (XI ,  X 2 ,  X , )  and Y = ( Y 1 ,  Y 2 ,  Y3)  are 3-vectors, A, (  i = 1,2,3) are para- 
meters, and F ( X )  = (Fl (X) ,  F 2 ( X ) ,  F 3 ( X ) )  is a non-linear transformation, 

3 

F , ( X ) =  B , +  ( C , , X , + D , J X ~ ) + G , ~ X 2 X 3 + G , ~ X ~ X l + G , 3 X ~ X ~ .  (4.2) 

Here B, ,  C , ,  D,, G, ( i , j  = 1,2,3) are parameters. This map is truncated at quadratic 
terms X : ,  X i ,  X i  and terms Y , ,  Y 2 ,  Y 3 .  We take this map as an approximation to 
the map that is fixed under the renormalisation operator. In other words, we truncate 
from the infinite-dimensional space of maps to a finite-dimensional space. The renor- 
malisation of map T is 

] = I  

R( T )  = BT2B-’ (4.3) 

where R is the period-doubling renormalisation operator composed of squaring ( T 2 )  
and rescaling ( B )  operators. The latter is defined such that the map is a fixed point 
of the renormalisation operator. R ( T )  is also truncated to be within the finite- 
dimensional space. 

We note that the map (4.1) is equivalent to the following HCnon-like map: 

X: = - A y ,  + 2f;(x, U, W )  Y: = (1/A4)xn (4.4) 

after the DeVogelaere transformation [ 101 

x = x  Y = Y + f ( X )  (4.5) 

where, as before, x = (xl, x2, xJ, Y = ( Y , ,  ~ 2 ,  ~ 3 1 ,  f(x) = cfl(x), fib), f3(x)). Note that 
the HCnon-like map (4.4) identifies, when the parameters AI = A2 = A3 = 1, the numeri- 
cally studied map (2.1), but without the restrictions of equations (2.3) and (2.4). The 
HCnon-like map (4.4) can be written in a second-order difference form: 

& + I  +x,-1= 2f(x,). (4.6) 

4.1. Reduction of the number of parameters 

The map (4.1) with equation (4.2) has thirty-three parameters. However, this number 
of parameters can be reduced. First we notice that a fixed map under a coordinate 
translation is still a fixed map. Considering the equivalent map (4.6), we make 
translations in xl, x2 and x3 such that 

B2= B 3 = 0 .  (4.7) 

Notice that all B 1 ,  B2 and B3 cannot vanish simultaneously because a complex 
coordinate transformation is not allowed here. Second we notice that there is neither 
a Y2 term nor a Y3 term in the Xl, equation of the DeVogelaere-like map (4.1). Hence 
neither has the renormalised map R( T ) .  The expression for X y  in R (  T )  can be found 
easily: 

R( T): X y  = -Al  Y {  + f l ( X ’ )  

= -xl +2f,(X’) 

=. . .  (4.8) 
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In order for R( T) to be still in the DeVogelaere form of equation (4.1), the coefficients 
of Y2 and Y3 in equation (4.8) should be zero, i.e. 

Cl2+ BIG,,  = O  (4.9) 

Cl3 + B1 GI2 = 0.  (4.10) 

Similarly, we have more constraints from expressions for X i  and X i  of R( T ) :  

C21+2BlD21 = O  C23 + Bl G22 = 0 (4.11) 

C3,+ 2B1 D3l= 0 (4.12) C32 + B, G33 = 0. 

In addition, we have two more constraints since there are no constant terms in X i  
and X ; :  

C, 1 + Bl D, 1 = 0 i = 2 , 3 .  

The solutions of these constraints (4.9)-(4.131, after a translation X I  - B,  + X I ,  are 

CI2 = Cl3 = C21= C23 = C,, = C32 = D21= D31= GI2 = GI3 = G22 = G33 = 0. (4.14) 

In other words, some terms should not appear in the non-linear functions of the map 
(4.2). Thus the non-linear functions can now be simplified as 

(4.13) 

F , ( X )  = B +  C X , + D X : + F , X : +  F,X:+ G I X 2 X 3  

F 2 ( X ) =  E , X 2 + F , X : + F 2 X ~ + G , X , X 2 +  G 2 X 2 X 3  (4.15) 

F 3 ( X )  = E , , X 3 + F 3 X : + F 4 X : + G , X l X 3 + G 3 X 2 X 3  

where we have introduced new parameters: B, C, D, E,,,  E,,  F,, F,, G,, G , ,  6, G, 
( i  = 1,2,3;  j = 1,2 ,3 ,4) .  Together with A , ,  A2 and A , ,  we have now nineteen para- 
meters. 

4.2. Renormalisation calculation 

Consider the map (4.1) with equation (4.15) as an approximation of the fixed map. 
We first iterate the map twice and then rescale X I ,  Y,  , X 2 ,  Y2 ,  X , ,  Y3 by a , ,  P I ,  a 2 ,  
p 2 ,  a3 ,  p,,  respectively. The expression for X y  of the renormalised map R( T) is given 
by 

+ [ B(2 + C + HI)] + XI( - 1 + 2CH1) 

where HI = C +2BD. Since R( T) should have the form of the original map (4.1) with 
(4.15), the operator R is a map from the parameter vector P= ( A i ,  B, C, 0,. . .) onto 
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P’ = ( A : ,  E‘, C ’ ,  D’, . . .). Some of these mapping (from P onto P’)  equations are, from 
(4.161, 

Yl : 

X?: 

A: = 2( a I /  PI ) A  I HI 

B’ = a1 B(2 + C + H , )  

XI : C ’ = - l + 2 C H ,  

X:: D’= ( 2 / a 1 ) D ( C 2 + H 1 )  

X:: F:  = 2 ( a l / a : ) F , ( E ~ + H 1 )  

X:: FL = 2( CY / a :) F, ( E t  + HI ) 

X2X3: G: = ~ ( Q ~ / C X ~ C Y ~ ) G ~ ( E ~ E , +  HI).  

(4.17) 

Similarly, from expressions for the X i  and X,” of R( T), we have additional mapping 
equations listed in equations (Al . l )  and (A1.2) of appendix 1. In all these mapping 
equations, equations (4.17), (Al.1) and (A1.2), we set P ‘ =  P = P , ,  and then solve the 
equations for P,. P ,  is the fixed value of the parameter P under the renormalisation. 
Substituting the found values of P ,  into the non-linear functions, equation (4.15), we 
finally obtain the fixed map of equation (4.1) (see appendix 2 for details). The fixed 
maps for the 6~ DeVogelaere-like map (4.1) are, after DeVogelaere transformation 
(4.9,  as follows. 

(i)  Three uncoupled two-dimensional area-preserving fixed maps: 

x: = -y ,  +2(C1Xj + x f )  y ;  = x, i = 1, 2,3 (4.18) 

where C1 = -1.2678 . . . . In this case, the renormalisation gives a I  = a2 = a3 = a = 
-4.0280.. . , PI = P 2  = P3 = P 16.5338.. . and SI = 8 = 8.9474.. . , S2 = S3 = 
-4.4510. . . , where a, P and S are the two-dimensional scaling factors determined by 
the renormalisation for 2~ area-preserving maps [ 13, and S I ,  S2 and S3 the relevant 
eigenvalues of the following matrices respectively, 

a(B’, C ‘ )  

(4.19) 

The perturbation around the fixed maps, (aP’/aP)._, contains in its diagonal the three 
matrices of equation (4.19) and 

(4.20) 

where i = 1,2,3;  K :  U, w ;  j = 1,2,3,4.  The matrices of (4.19) have, in addition to S I ,  
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6, and a3,  eigenvalues that arise from coordinate transformations and the truncation 
at terms of xi, x: ,  x: ,  yI, Y 2 ,  Y 3 .  

(ii) The second 6~ fixed map: two two-dimensional area-preserving fixed maps 
coupled with a two-dimensional linear map: 

x: = -y, + 2( c , x ,  + x f )  + 2xs Y :  = x, i = 1 , 2  
(4.21) 

where C2 could be 1 or -4. In this case, a1 = a2 = a, aj = 1 2 . 9 1 1 6 . .  . or 13.8104. .  . 
(for c Z = 1  or -i); p 1 = p r = p ,  p 3 = 2 a 3  or -a3 (for c,= 1 or -4); 61 = a ,  s2= 
-4.4510. . . , a3 = 4 or -2. 

(iii) The third 6~ fixed map: one two-dimensional area-preserving fixed map coupled 
with two two-dimensional linear maps: 

x;= -y3+2c*x3 Y; = x3 

x’ = - y+2 (  C,x+x2)+2u”2w2 y ‘ = x  

u ’ = - v + 2 C , x  U ’ =  U (4.22) 

w’= -z  + 2 c ; w  z ’ =  w 

where C2 (or Cg) could be 1 or -4. In this case, a 1  = a, a2 = 12.9116. .  . or 13.8104. .  . 
(for C 2 =  1 or -$I, a3 = 12.9116. .  . or k3.8104. .  . (for C ;  = 1 or -4); PI = P, P 2  = 2a2 
or -a2 (for C 2 =  1 or -:), p3= 2a3 or -a3 (for c:= 1 or -+); 6 ,  = ti, s 2 = 4  or -2 (for 
C 2 =  1 or -$), 83 = 4  or -2 (for c;= 1 or -4). 

As we can see from these fixed maps, the second Feigenbaum constant S 2  could 
be one of the three values (6 ,  = -4.4.  . . , 4, -2). No more 62 values have been found. 
The three 62 values agree with the numerical results, cf § 3.3. 

5. Conclusion 

We have obtained in 0 3 the period-doubling sequences for orbits on MO of symmetric 
six-dimensional volume-preserving maps (equation (2.1)) with several restrictions 
(equations (2.3) and (2.4)) on the non-linear function, and with only two parameters 
(cf equation (3.1)). For this special sequence of our special map, period-doubling 
behaviour is the same as in symmetric four-dimensional volume-preserving maps. Also, 
we have performed in § 4 the renormalisation calculation for asymmetric (without 
those specialities) DeVogelaere-like six-dimensional maps, and found that the fixed 
maps are very similar to those of four-dimensional maps. In both the numerical and 
the renormalisation work, the three universality (E, Land U) classes have been obtained. 
The classes are characterised by their own second Feigenbaum constant (6 ,  = -4 .4.  . . , 
4, -2 respectively). They are identical to those in the 4~ case. However, we have not 
tried a numerical search for period-doubling sequences in asymmetric six-dimensional 
volume-preserving maps. Furthermore, the maps studied in this paper are three coupled 
2~ area-preserving maps, such as equations (2.1) and (4.1). A general 6~ volume- 
preserving map is unnecessary in this (coupling) form. Finally, for 6~ volume- 
preserving maps there are three stability indices (cf § 3.3) and thus a three-parameter 
family of 6~ volume-preserving maps should be considered. I hope that this work can 
serve as a stepping stone to a complete understanding of period doubling in 6~ 

volume-preserving maps. 
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Appendix 1 

Similarly to what we did in the text in order to get the mapping equations (4.17) from 
the expression for X ; ,  we obtain the following additional mapping equations from 
the expression for X ;  of the renormalisation map R( T ) :  

Y2 : A; = 2(az/Pz)A2H2 

x2: 

X : :  FI = 2 ( l / a z ) F l ( H 2 + E ~ )  

X : :  

EL = -1 + 2E,H, 

F ;  = 2( a2/  a:)F2( H2 + E t , )  

x,x,: 
X2X3: 

G: = 2( 1 / CY I )  G, (H2 + CE,) 

G; = 2(1/ a3)G2(H2+ E u E w )  

where H2 = E, + BG,. We also have, from the expression for X l ,  

(Al . l )  

Y3 : 

x3 : 
X i :  

X i :  

X , X 3 :  

x,x,: 
where H, = E, + BG,. 

(Al.2) 

Appendix 2 

In this appendix, we describe how to obtain the fixed maps (4.18), (4.21) and (4.22) 
from the mapping equations (4.17), (A l . l )  and (A1.2). 

In order to determine the fixed values (P,)  of the parameter under the renormalisa- 
tion, we set P' = P = P,  in the mapping equations, and then solve them for P,. Notice 
that the first five equations in (4.17) and the first, second and fifth equations in ( A l . l )  
can be solved independently from the other equations. They are equations for B, C, 
E,, G,, a l ,  a 2 ,  P I  and p2.  They are just the same equations as those in 4~ symmetric 
volume-preserving maps, equation (3.2) in [ 9 ] .  Thus their solutions are of course just 
those for the 4~ case, listed as E, L and U maps in table 1 of [ 9 ] .  Similar discussions 
are valid for the first five equations in (4.17) and the first, second and fifth in (A1.2). 
In other words, the fixed values of parameters B, C, E,, G,, E,,,, G,,, and the scaling 
factors a l ,  P I ,  a 2 ,  P 2 ,  a3, P3 have been determined by the first five equations in (4.17) 
and first, second and fifth in (Al.1) and (A1.2). 
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The remaining equations (i.e. the sixth and seventh equations in (4.17), and the 
third, forth and sixth in ( A l . l )  and (A1.2)) can be used to determine the remaining 
parameters. We first note that there is no contradiction between the fifth and sixth 
equations in (4.17) for all cases ( E ,  = E ,  = C, 1 or -4; or E ,  # En). We also note that 
the parameters A, , A2, A,, D, F,, F, are scales in Yl , Y2, Y 3 ,  XI,  X2, X, and that 
the parameters F, and G, ( i  = 1 , 2 , 3 , j  = 1 , 2 , 3 , 4 )  could be any values if E ,  = E,, and 
F, = G, = 0 if E,, # E,. These are required by the ‘remaining’ equations mentioned 
above. Hence we discuss the cases E ,  = E ,  and E,  # E ,  separately below. 

The case of E,  = E,  contains three possibilities: E ,  = E ,  = C, 1 or - 1 .  When 
E ,  = E , ,  = C, we have G, = G, = 2 ,  a, = a 2 =  cy3= a( = -4.0280..  .), PI = P 2 = P 3 =  

/3( = 16.5338.. .) and 8, = S (  = 8.9474.. .), a2 = 8, = -4.4510.. . . Since the parameters 
A , ,  A2, A,, D, F,, F, and F , ,  G, are arbitrary, we set Al  = A2 = A, = D = 1 ,  F, = F, = 
GI = -2, F, = F2 = 0, F, = F4 = 3, G, = G3 = 2. Thus the fixed map (4.18) is obtained 
after a coordinate transformation XI + X2 + X, + XI,  Yl + Y2 + Y3 + Y1, X, + 2X2 + 
X3+X2, Y,+2Y2+ Y3+ Y2, X 1 + X 2 + 2 X 3 + X 3 ,  Y l +  Y2+2Y3+ Y, and after the 
DeVogelaere transformation (4.5). In the cases of E, = E,  = 1 or -;, we set AI = A2 = 
A, = D = F, = F ,  = 1 and F, = GJ = 0. Thus we obtain the fixed map (4.22) with C, = 
C;= 1 or -4. 

In the case of E,  # E,, we know that F, = GJ = 0. We again set the scales in X, Y, 
U, V, W, Z equal to 1,  i.e. A,  = A2 = A, = D = F, = F, = 1 .  The fixed map (4.21) is 
obtained if either E,  or E,  is equal to C; otherwise the fixed map (4.22) is obtained. 
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